Лампы энергосберегающего типа часто используются для освещения помещений, как в быту, так и на производственных площадях. По истечении своего срока службы такие осветительные устройства приходят в негодность, выходят из строя. Однако, энергосберегающую лампу, которая вышла из строя, после непродолжительного простого ремонта, в большинстве случаев можно успешно восстановить и вновь использовать в качестве осветительного прибора.
В том случае, если из строя вышел светильник, тогда комплектующие, из которых состоит ЭЛ, можно повторно использовать для создания разнообразных устройств, которые будут полезны в быту. Например, из начинки, которая содержится в этом осветительном устройстве, можно сделать блок питания повышенной мощности, который прекрасно подойдет для работы в любом нужном для пользователя напряжении.
На заметку! В ежедневном бытовом использовании часто возникает необходимость в использовании компактного, небольшого и мощного низковольтного блока питания. Изготовить такой блок питания можно самостоятельно. Для этого необходимо использовать комплектующие, которые содержаться в вышедшей из строя ЭЛ. Ведь в осветительных приборах такого типа, как правило, чаще всего выходят из строя, ломаются светильники, в то время как сами блоки питания остаются исправными.
фонарик из энергосберегающей лампы
Устройство паяльника работающего по импульсному принципу
Импульсный паяльник устроен относительно просто. Он состоит из:
- Жало — рабочий орган, представляет собой V- образный отрезок медной проволоки толщиной от 1 до 3 миллиметров, закрепленный в держателе.
- Источник питания — подает на жало электрический ток низкого напряжения .
- Рукоятка пистолетного типа.
- Кнопка включения устройства.
- Сетевой кабель с вилкой.
- Лампочка или светодиод подсветки рабочей зоны (необязательно, но очень удобно)
Самый сложный узел — это источник питания. Он преобразует сетевое напряжение в 220 В 50 герц в низкое напряжение высокой частоты (20-40 килогерц). Входная цепь источника через кнопку включения соединена с сетевым кабелем, а к выходной цепи подключены контакты жала. Существуют различные схемы блоков питания импульсных паяльников.
Устройство импульсного паяльника
Источник питания может быть встроенным в рукоятку. Закрепленный в корпусе трансформатор обладает большим весом и заметными размерами. При длительной работе это будет сильно утомлять оператора. В некоторых вариантах исполнения источник питания выполняют в виде отдельного блока. Это повышает безопасность и удобство пользования прибором. Кнопка включения устройства вмонтирована в рукоятку.
Основные конструктивные отличия от обычного паяльника:
- Наличие блока питания.
- Наличие кнопки включения.
- Отсутствие нагревательного элемента.
- Нет необходимости в подставке — температура паяльника повышается только на время пайки, после отпускания кнопки он очень быстро остывает до комнатной температуры .
Основные отличия
Светодиодная лампа, так или иначе, обеспечивает помещению более яркое освещение. При напряжении 13 Вт она выдаёт 1000 лм, энергосберегающая — всего 800 лм.
Что касается теплоотдачи, она определяется по показателям поддержания оптимальной температуры в здании, сохранении в подходящем состоянии бытовой техники и мебели. И здесь тоже лидирует светодиодное изделие, обладая теплоотдачей 30,5 градусов при теплоотдаче энергосберегающего устройства 81,7 градусов.
Последнее изделие рассчитано на 8000 часов активной работы, тогда как для первого установлен рекордный срок эксплуатации — до 50000 часов. Причём светодиодная лампа с течением времени не теряет первоначального оттенка освещения и яркости, чего нельзя сказать об энергосберегающей.
Лавры первенства достаются светодиодным источникам и в процессе утилизации, их можно выбросить в мусорный контейнер. , выброшенный на свалку, загрязняет окружающую среду (воздух и грунтовые воды) ядовитыми ртутными парами, в результате чего происходит сильнейшее отравление людей, животных и рыбы. Именно поэтому должна проходить в соответствии с определёнными правилами.
Несмотря на плюсы и минусы, светодиодные и являются взаимозаменяемыми — изготовители побеспокоились о соответствующем размере любой из ламп, и патронов для них.
Общим для двух конкурирующих аналогов является довольно качественный цветовой поток, обеспечивающий высокий уровень комфорта для сетчатки человеческого глаза.
Принцип действия
В основу работы устройства положен простой физический принцип нагревания проводника при пропускании через него сильного электрического тока.
При включении устройства нажатием кнопки кнопкой замыкается входящая цепь блока питания, высокое напряжение преобразуется трансформатором в низкое напряжение на вторичной обмотке, в выходной цепи возникает ток, который быстро нагревает жало. При отпускании кнопки цепь размыкается, ток перестает течь и нагрев прекращается.
Сила тока в рабочей цепи достигает 25-50 ампер при невысоком напряжении около 2 вольт. Вторичная обмотка трансформатора должна быть намотана проводом, должна иметь сечение в несколько раз больше, чем сечение проволоки жала. То же самое касается токопроводящих шин, соединяющих концы жала с вторичной обмоткой. Это предотвратит их перегрев и непроизводительные затраты энергии на их нагревание.
Используем старые энергосберегающие лампы
Посещая сайты зарубежных самодельщиков, я обратил внимание что там очень популярен так называемый лайф хакинг. Дословно это переводится как «взлом жизни». Не подумайте ничего плохого, к компьютерному хакингу лайф хакинг не имеет никакого отношения! Просто так называют полезные советы, которые помогают людям использовать казалось бы совсем ненужные вещи — пустые жестяные банки, ПЭТ-бутылки, перегоревшие лампочки, выведшие из строя бытовые приборы. Они не выбрасываются, а просто меняют свое амплуа или идут на запчасти для других полезных устройств. Нечто похожее хочу предложить и я. Энергосберегающие лампы набирают популярность. Евросоюз вообще уже запрещает производить обычные лампы накаливания. Но к сожалению, энергосберегающие лампы тоже иногда выходят из строя. Их можно, конечно выбросить и забыть. А можно ее подвергнуть процедуре хакинга. Итак, разбираем перегоревшую энергосберегающую лампу для попытки использовать ее повторно. Потому что перегорают, как правило, только нити в самой колбе, а электронные компоненты в цоколе лампы работоспособны с вероятностью 99,9%.
Что бы посмотреть, какого цвета внутренности у энергосберегающей лампы, ее надо вскрыть. Что бы не поранить руки о стеклянные трубки (они из тонкого стекла и могут лопнуть в любой момент) , оборачиваем колбу полиэтиленовым пакетом и прихватываем скотчем. Место склейки корпуса очевидно и мы пытаемся разъединить его части с помощью отвертки или мощного ножа. Если делать это аккуратно, потратим минуты 2.
Когда энергосберегающая лампа распадется на три части, нам откроется приведенная картина
Как видим, основные части это колба, плата с электронными элементами (радиодеталями) и цоколь лампы. Теперь прикинем, что и как мы можем применить.
Колба энергосберегающей лампы. Честно говоря, что делать с ним, я пока не придумал. Колба — это запаянная стеклянная оболочка, покрытая изнутри люминофором. Безболезненно вскрыть ее удастся вряд ли. А использовать ее как какой нибудь поплавок — ненадежно – стекло все таки.
Цоколь. Это предмет уже более привлекательный. Ему можно дать вторую жизнь. Ведь это фактически небольшой корпус, с контактом, который можно ввинтить в любой стандартный патрон Е27 или Е14.
Самое простое применение — из этого цоколя можно сделать удлинитель (маломощный, конечно). Только включать его можно будет не в розетку, а в любой патрон. Возможно, самое старшее поколение помнит такие приборы. Назывались они почему то «жулик». Такой своеобразный переходник «лампа-розетка». Между прочим, может быть весьма полезен и в наше время. Особенно при поездках за границу. Поскольку система конструкции розеток может быть в стране свои и оригинальная и не всегда удается приобрести или подобрать переходник к ней, а заряжать мобильник, ноутбук, навигатор, фотоаппарат надо.
Я лично однажды попал в такую ситуацию, отдыхая на Мальдивах . В тот раз – выручила смекалка и то, что я все же инженер электронщик. А вот некоторые соплеменники помаялись с зарядкой, пока я им не рассказал.
В то же время – будь у них такой «жулик» — не было бы проблем! Во всем мире только 2 стандарта ламп (цокольных) и есть — на 27 и на 14 мм цоколь. И подключиться к электросети имея комплект из двух таких переходников можно хоть в Африке.
Другое применение цоколя — сделать из него светодиодный ночник. Если взять мощные осветительные светодиоды и подобрать к ним гасящее сопротивление, то их можно будет включать в 220-вольтовую сеть. Закрыть все можно какой либо мелкой полупрозрачной игрушкой или просто кусочком оргстекла. Вот и готова светодиодная дежурная лампа или ночник для ребенка. И вкручивать его можно в обычную настольную лампу или бра. А можно обеспечить подсветку в каком то техническом помещении. Ведь такая лампа будет потреблять от силы 1-2 Вт. Можно сделать переходник с Е27 на Е14 (миньон), а если вы дружите с электроникой, можно собрать в цоколе и какое то другое электронное устройство.
Электронная плата энергосберегающей лампы. Фактически, представляет из себя блок питания – преобразователь, причем высокочастотный.
Рассмотрим поближе, что там есть интересного, на этой плате. Итак:
— Диоды — 6 шт. Высоковольтные (220 Вольт) держат, хотя, очевидно и маломощные (вряд ли больше 0,5 Ампер). Но для диодного выпрямительного моста сгодятся вполне.
— Дроссель. Вещь в принципе полезная, но не очень. Помехи по сети убирает, где они есть.
— Транзисторы средней мощности ( Вт по 2). Отличная вещь, ставим жирный +.
— Высоковольтный электролит. Емкость хоть и небольшая (4,7 мкФ), зато на 400 вольт. Плюс.
— Обычный конденсаторы на разные емкости, но все на 250 вольт. Плюс.
— Два высокочастотных трансформатора с неизвестными параметрами. Куда применить – пока неизвестно, вещь совсем не универсальная (кроме сердечника).
— Несколько резисторов (номинал неизвестен, надо или прозвонить омметром, или расшифровывать цветные метки на них). Плюс.
Что же можно сделать из этой весьма небольшой кучки деталей? На самом деле — весьма много чего. Существует много схем полезных приборов «на одном транзисторе» в прямом смысле этого слова. От всевозможных сторожевых устройств, сигнализаторов, регуляторов температуры и таймеров и пр. и пр. и пр. А у нас — целых два транзистора!
В заключении преимущества и недостатки энергосберегающих ламп
Преимущества энергосберегающих ламп Экономия электроэнергии. Коэффициент полезного действия у энергосберегающей лампы очень высокий и световая отдача примерно в 5 раз больше чем у традиционной лампочки накаливания. Например, энергосберегающая лампочка мощностью 20 Вт создает световой поток равный световому потоку обычной лампы накаливания 100 Вт. Благодаря такому соотношению энергосберегающие лампы позволяют экономить экономию на 80% при этом без потерь освещенности комнаты привычного для вас. Причем, в процессе долгой эксплуатации от обычной лампочки накаливания световой поток со временем уменьшается из-за выгорания вольфрамовой нити накаливания, и она хуже освещает комнату, а у энергосберегающих ламп такого недостатка нет.
Долгий срок службы. По сравнению с традиционными лампами накаливания, энергосберегающие лампы служат в несколько раз дольше. Обычные лампочки накаливания выходят из строя по причине перегорания вольфрамовой нити. Энергосберегающие лампы, имея другую конструкцию и принципиально иной принцип работы, служат гораздо дольше ламп накаливания в среднем 5-15 раз. Это примерно от 5 до 12 тысяч часов работы лампы (обычно ресурс работы лампы определяется производителем и указывается на упаковке). Благодаря тому, что энергосберегающие лампы служат долго и не требуют частой замены, их очень удобно применять в тех местах, где затруднен процесс замены лампочек, например в помещениях с высокими потолками или в люстрах со сложными конструкциями, где для замены лампочки приходится разбирать корпус самой люстры.
Низкая теплоотдача. Благодаря высокому коэффициенту полезного действия у энергосберегающих ламп, вся затраченная электроэнергия преобразуется в световой поток, при этом энергосберегающие лампы выделяют очень мало тепла. В некоторых люстрах и светильниках опасно использовать обычные лампочки накаливания, из-за того что они выделяя большое количества тепла могут расплавить пластмассовую часть патрона, прилегающие провода или сам корпус, что в свою очередь может привести к пожару. Поэтому энергосберегающие лампы просто необходимо использовать в светильниках, люстрах и бра с ограничением уровня температуры.
Большая светоотдача. В обычной лампе накаливания свет идет только от вольфрамовой спирали. Энергосберегающая лампа светится по всей своей площади. Благодаря чему свет от энергосберегающей лампы получается мягкий и равномерный, более приятен для глаз и лучше распространяется по помещению.
Выбор желаемого цвета. Благодаря различным оттенкам люминофора покрывающего корпус лампочки, энергосберегающие лампы имеют различные цвета светового потока, это может быть мягкий белый свет, холодный белый, дневной свет, и т.д.;
Недостатки энергосберегающих ламп Единственным и значительным недостатком энергосберегающих ламп по сравнению с традиционными лампами накаливания является их высокая цена. Цена энергосберегающей лампочки в 10-20 раз больше обычной лампочки накаливания. Но энергосберегающая лампочка неспроста называется энергосберегающей. Учитывая экономию на электроэнергии при использовании этих ламп и с их срок службы, в итого, применение энергосберегающих ламп станет для вас и вашего бюджета более выгодным.
Есть еще одна особенность применения энергосберегающих ламп, которую нужно отнести к их недостатку. Энергосберегающая лампа наполнена внутри парами ртути. Ртуть считается опасным ядом. Поэтому очень опасно разбивать такие лампы в квартире и помещении. Следует быть очень осторожными при обращении с ними. По той же причине энергосберегающие лампы можно отнести к экологически вредным, и поэтому они требуют специальной утилизации, а выбрасывать такие лампы, по сути, запрещено. Но почему-то при продаже энергосберегающих ламп в магазине, продавцы не объясняют, куда их потом девать.
Поэтому, используя неисправные лампы повторно, мы еще и окружающую среду сохраняем от вредного воздействия.
Источники тока для питания импульсных паяльников
Перед началом самостоятельного изготовления паяльника следует, исходя из доступных материалов, определиться с выбором типа источника.
Традиционно импульсный паяльник в качестве источника питания использовал мощный понижающий трансформатор и назывался так только из-за кратковременного режима работы.
Такое устройство просто по конструкции, но обладает большим весом и габаритами.
Источник питания
Ставшие доступными не так давно импульсные блоки питания устроены намного сложнее. Они сначала выпрямляют поступающее на их вход низкочастотное сетевое напряжение, далее преобразуют его в высокочастотное (20-40 килогерц) и уже его подают на первичную обмотку трансформатора. Высокочастотные трансформаторы в несколько раз меньше по массе и габаритам, чем низкочастотные, поэтому весь импульсный источник питания, несмотря на сложное устройство, занимает места в несколько раз меньше, чем один низкочастотный трансформатор.
Резюмируя, можно сказать, что трансформаторные источники просты и надежны, но тяжелы и громоздки.
Импульсные существенно сложнее по устройству, но позволяют сэкономить вес и габариты.
Изготовление ИБП своими руками
Чаще всего во время изготовления импульсного БП требуется незначительно изменять строение дросселя, если для этой цели используется двухтранзисторная схема. Конечно же, некоторые элементы в устройстве нужно будет удалить.
Если же изготавливается БП, который будет иметь мощность 3,7−20 Ватт, в таком случае трансформатор не является основной составляющей. Вместо него лучше всего сделать несколько витков провода, которые закрепляются на магнитопровод. Для этого необязательно избавляться от старой намотки, их можно выполнить поверх.
Рекомендуется для этой цели использовать провод марки МГТФ, имеющий фторопластовую изоляцию. Понадобится небольшое его количество. Несмотря на это обмотка будет полностью покрыта, поскольку большая часть отводится на изоляцию. Из-за этого такие устройства имеют низкие показатели мощности. Для её увеличения требуется использовать трансформатор переменного тока.
Использование трансформатора
Главным преимуществом при изготовлении блока питания своими руками является то, что есть возможность подстраиваться под показатели трансформатора. Кроме этого, не потребуется цепь обратной связи, которая чаще всего является неотъемлемой частью в работе устройства. Даже если во время сборки были сделаны какие-либо ошибки, чаще всего такой блок будет работать.
Для того чтобы сделать собственноручно трансформатор, потребуется иметь дроссель, межобмоточную изоляцию, а также обмотку. Последнюю лучше всего выполнить из лакированного медного провода. Следует не забывать о том, что дроссель будет работать под напряжением.
Обмотку нужно тщательно изолировать даже тогда, когда она имеет заводскую специальную защитную плёнку из синтетического материала. В качестве изоляции можно использовать или электрокартон, или же обычную бумажную ленту, толщина которой должна быть не меньше 0,1 мм. Только после того, как будет сделана изоляция, можно поверх неё наматывать медный провод.
Что касается обмотки, то провод лучше всего выбрать как можно толще, а вот количество необходимых витков можно подобрать исходя из требуемых показателей работы будущего устройства.
Таким образом, можно сделать ИБП, который будет иметь мощность более 20 Вт.
Назначение выпрямителя
Для того чтобы в импульсном блоке не произошло насыщение магнитопровода, требуется использовать только двухполупериодный выходной выпрямитель. В том случае, если трансформатор должен понижать напряжение, рекомендуется использование схемы с нулевой точкой. Чтобы выполнить такую схему, нужно иметь две абсолютно одинаковые вторичные обмотки. Их можно сделать самостоятельно.
Следует учитывать то, что выпрямитель по типу «диодный мост» для этой цели не подходит. Это связано с тем, что значительное количество мощности во время передачи будет теряться, а значение электрического напряжения будет минимальным (менее 12В). Но если делать выпрямитель из специальных импульсных диодов, тогда стоимость такого устройства обойдётся значительно дороже.
Наладка устройства
После того как БП будет собран, требуется проверить его работу на максимальной мощности. Это необходимо для того, чтобы измерить температуру нагревания трансформатора и транзистора, значения которых не должны превышать 65 и 40 градусов соответственно. Чтобы избежать перегрева этих элементов, достаточно увеличить сечение провода обмотки. Также часто помогает изменение мощности магнитопровода в большую сторону (учитывается ЭПР). В том случае, если дроссель был взят из балласта светодиодного фонаря, увеличить сечение не получится. Единственным вариантом будет контролировать нагрузку на прибор.
Процесс переделки понижающего трансформатора
Выбирая понижающий трансформатор, следует помнить, что его мощность должна быть от 50 до 150 ватт. Меньшая приведет к перегреву и выходу устройства из строя, большая — к неоправданному утяжелению и громоздкости.
Импульсный паяльник на основе трансформатора
Первичную обмотку переделывать не нужно, а вторичную следует удалить, разобрав пластины. Точный расчет вторичной обмотки не требуется, важнее обеспечить максимальное сечение ее провода или шины. Обычно наматывают от двух до шести витков. Сечение должно быть в пределах от 6 до 10 мм2.
Важно! Витки вторичной обмотки не должны касаться друг друга и сердечника трансформатора.
Если вторичная обмотка выполняется медной шиной, ее концы можно оставить подлиннее и использовать в качестве токопроводов, закрепив жало непосредственно к ним. Отсутствие лишних соединений повысит надежность работы и улучшит температурный режим устройства.
После окончания намотки и монтажа обязательно проверьте обмотку тестером на отсутствие замыкания
Импульсный паяльник из понижающего трансформатора
Советы по безопасности
Перед разборкой лампочек относящихся к энергосберегающему типу и изъятия всех необходимых комплектующих, которые потом послужат в качестве исходного материала для создания самоделок, необходимо ознакомиться с правилами техники безопасности. Перед выполнением всех работ по разборке ЭЛ необходимо убедиться, что стеклянная колба устройства является целой и неповрежденной. Ведь, как известно она заполнена ртутью, контакт с корой может привести к плачевным последствиям и нарушению здоровья.
При разборке необходимо аккуратно обращаться с корпусом и стеклянной колбой. Ни в коем случае нельзя открывать лампы, поворачивая стеклянную колбу. Такие действия могут привести к ее повреждению и попаданию наружу ртути. Тело лампочки лучше всего отрывать при помощи отвертки либо аккуратно разрезать его с помощью пилки.
На заметку! При извлечении печатной платы из ЭЛ, необходимо постараться, как можно реже к ней прикасаться. Такие меры предосторожности обусловлены тем, что она оснащена высоковольтным конденсатором, который может накапливать заряд.
Переделка электронного трансформатора
Импульсный источник питания для паяльника берется «как есть» и подвергается минимальным переделкам. Чаще всего применяют импульсный блок питания для галогенных ламп на напряжение 12 вольт и мощностью 60 ватт, но подойдет и любой с близкими параметрами.
Поскольку в современных блоках питания используются неразборные тороидальные трансформаторы, намотанные на ферритовом кольце и прочно закрепленные на плате, то старую вторичную обмотку не удаляют, а просто отключают.
Новую вторичную обмотку делают из всего одного витка медной шины большого сечения, аккуратно просовывая ее в центральное отверстие выходного трансформатора.
Если у нашедшегося под рукой провода или шины сечение недостаточное, то следует сделать две вторичные обмотки из одного витка, подключив их к токопроводам параллельно.
В целом процесс переделки своими руками электронного трансформатора в импульсный паяльник получается проще, чем в случае низкочастотного трансформатора.
Балласт люминесцентной лампы
В каждой энергосберегающей лампочке имеется небольшая схема, которая предотвращает мигание во время включения, а также способствует постепенному разогреву спиралей устройства. Её название — электронный балласт. Именно с помощью него газ может испускать свечение (частота 30−100 кГц, а иногда и 105 кГц).
Вследствие того, что устройство может иметь такие высокие показатели частот, коэффициент потребления энергии возрастает до единицы, а это, в свою очередь, делает энергосберегающие лампы экономично выгодными.
Значительным преимуществом таких устройств является отсутствие какого-либо шума во время работы, а также электромагнитного поля, который негативно воздействует на организм человека.
Важную роль в схеме балласта энергосберегающей лампы играет электронный дроссель. Именно он определяет, будет ли устройство загораться сразу же с полной силой или же разогреваться постепенно в течение нескольких минут. Стоит отметить, что производитель никогда на упаковке не указывает время разогрева. Проверить это можно лишь во время эксплуатации устройства.
Те балластные схемы, которые выполняют функцию преобразования напряжения (а таковых большая часть), собираются на полупроводниковых транзисторах. В дорогостоящих устройствах схема более сложная, чем в дешёвых лампочках.
Из сгоревшей энергосберегающей лампы можно сделать заготовки для будущего импульсного блока питания. Также для этого можно взять и работающее устройство.
В составе компактной люминесцентной лампочки (КЛЛ) имеются следующие элементы:
- Биполярные транзисторы с защитными диодами. Как правило, они выдерживают напряжение в 700 В, а также силу тока до 4 А.
- Трансформатор импульсного тока.
- Электронный дроссель.
- Конденсатор (10/50 В, а также 18В).
- Двунаправленный триггерный неуправляемый диод (динистор).
- Очень редко в устройстве содержится униполярный транзистор.
Во время изготовления БП из энергосберегающей лампы своими руками с использованием недешёвых экономок достаточно дополнить источник некоторыми деталями. Также в качестве основы будущего блока можно взять драйвер для светодиодов, которые зачастую устанавливают в фонарики.
Важно отметить, что для выполнения ИБП брать схему, имеющую электролитический конденсатор, не рекомендуется. Это связано с тем, что она в приборе в качестве блока питания прослужит недолго. Также для этой цели не подходят электронные балласты, в составе которых имеются специальные платы небольших размеров.
Изготовление жала паяльника
Жало — самый простой, но, тем не менее, ответственный узел паяльника.
Жало паяльника
Медная проволока должна быть диаметром 1-2 миллиметра, крепить ее к токопроводным шинам следует болтовыми соединениями с шайбами. Если под рукой найдутся цанговые соединения на такой диаметр- то паяльник приобретет намного более эстетичный вид.
После нескольких пробных паек, возможно, придется изменить диаметр проволоки. Слишком тонкая будет перегреваться сама, и перегревать припаиваемые детали, слишком толстая, напротив, будет медленно прогреваться, задерживая основную работу.
Подбором толщины проволоки надо добиться разогрева жала до стабильной температуры за 5-7 секунд. Чрезмерное увеличение толщины приведет к росту потребляемой мощности и к перегреву вторичной обмотки выходного трансформатора. В ходе пробных паек нужно обязательно проверять степень ее нагрева, не допуская тления или даже воспламенения изоляции.
Рассчитываем ёмкость необходимого напряжения
Для экономии используют конденсаторы с маленьким показателем ёмкости. Именно от них будет зависеть показатель пульсации входящего напряжения. Для снижения пульсации, необходимо увеличивать объём конденсаторов тоже делается для увеличения показателя пульсации только в обратном порядке.
Для снижения размеров и улучшения компактности, возможно, применять конденсаторы на электролитах.
К примеру, можно использовать такие конденсаторы, которые вмонтированы в фототехнику. Они обладают ёмкостью 100µF х 350V.
Чтобы обеспечить бп показателем двадцать ватт, достаточно использовать стандартную схему от энергосберегающих светильников и вовсе не наматывая дополнительной намотки на трансформаторы. В случае, когда дроссель обладает свободным пространством и может дополнительно уместить витки, можно их добавить.
Таким образом, следует добавить два-три десятка витков обмотки, чтобы была возможность подзаряжать мелкие устройства или использовать ибп как усилитель для техники.
Схема блока питания на 20 ватт
Если вам требуется более эффективное увеличение показателя мощности, можно использовать самый простой провод из меди, покрытый лаком. Он специально предназначен для обмотки. Убедитесь что изоляция на стандартной обмотке дросселя достаточно качественная, так как эта часть будет находиться под значением входящего тока. Также следует оградить её от вторичных витков с помощью бумажной изоляцией.
Действующая модель БП мощность – 20 Ватт.
Для изоляции используем специальный картон толщиной 0.05 миллиметра или 0.1 миллиметра. В первом случае необходимо два слова, во втором достаточно одного. Сечение обмоточного провода используем из максимального больших, количество витков будет подбирать методом проб. Обычно витков необходимо достаточно мало.
Проделав все необходимые действия, вы получаете мощность бп 20 ватт и рабочую температура трансформатора шестьдесят градусов, транзистора сорок два. Большую мощность сделать не получиться, так как размеры дросселя ограничены и сделать большее количество обмотки не получится.
Уменьшение поперечного диаметра используемого провода конечно увеличит численность витков, но на мощность это повлияет только в минус.
Чтобы иметь возможность поднять мощность бп до сотни ватт, необходимо дополнительно докрутить импульсный трансформатор и расширить ёмкость фильтровочного конденсатора до 100 фарад.
Схема 100 ватт БП
Чтобы облегчить нагрузку и уменьшить температуру транзисторов, к ним следует добавить радиаторы для охлаждения. При такой конструкции, КПД получится в районе девяноста процентов.
Следует подключить транзистор 13003
К электронному балласту бп следует подключить транзистор 13003, который способен закрепляться с помощью фасонной пружины. Они выгодны тем, что с ними нет необходимости устанавливать прокладку из-за отсутствия металлических площадок. Конечно, их теплоотдача значительно хуже.
Лучше всего проводить закрепления с помощью винтов М2.5, с заранее установленной изоляцией. Также возможно использовать термопасту, которая не передаёт напряжение сети.
Убедитесь что транзисторы надёжно заизолированы, так как через них проходит ток и при плохой изоляции возможно короткое замыкание.
Подключение к сети 220 вольт
Подключение происходит с помощью лампы накаливания. Она будет служить защитным механизмом и подключается перед блоком питания.
В этом случае, лампа служит балластом, который имеет нелинейный показатель и отлично предохраняет ибп от неисправной работы сети. Значение мощности лампы необходимо подбирать таким же образом, как и мощность самого импульсного блока питания.
Как за час сделать импульсный блок питания из сгоревшей лампочки?
В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. https://сайт/
Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.
Преимущества и недостатки
Импульсный паяльник, собранный своими руками, будет выгодно отличаться от других типов паяльников следующим:
- Малый расход электроэнергии. Она не тратится на обогрев мастерской, а расходуется только в момент пайки.
- Безопасность. Жало в нерабочем состоянии мгновенно остывает, таким устройством нельзя обжечься, поджечь что-либо на рабочем столе или проплавить изоляцию.
- Удобство использования, ремонта и обслуживания. Жало можно изготовить заменить за считанные минуты. Кроме того, жалу можно придать любую форму для выпаивания деталей в труднодоступных местах или среди плотного монтажа.
Кроме достоинств, этому типу устройств присущ и недостаток: большой вес и размеры утомляют руку при длительном использовании. Чтобы избежать этого, применяют импульсный источник питания и даже выносят его в отдельный блок.
Тестирование ИБП
Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.
Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.
Изготовление импульсного микросхемного паяльника
Для изготовления паяльника, которым можно выпаивать и впаивать в печатные платы микросхемы и другие электронные компоненты, отличающиеся особой чувствительностью к перегреву, в конструкцию устройства добавляют специально переделанный резистор, играющий роль защитного устройства. Хорошо подойдет резистор типа МЛТ сопротивлением 8 ом и рассеиваемой мощностью 0,5-2 ватта
Паяльник для микросхем своими руками
Кроме того, потребуется:
- Полоска двухстороннего фольгированного текстолита 10Х30 миллиметров.
- Кусок стальной проволоки толщиной 0,8 мм.
- Медная проволока для жала.
- Корпус шариковой ручки.
- Импульсный блок питания 12-15 вольт 1 ампер.
Последовательность изготовления следующая:
- Снять лакокрасочное покрытие с резистора, нагрев его в муфельной печи или газовой горелкой.
- надфилем или лобзиком отпилить один из выводов .
- просверлить в этом месте отверстие диаметром 1,1 мм, достигнув внутренней полости. Второй вывод следует подключить к источнику питания, он же будет крепить устройство к ручке.
- Расширить отверстие в корпусе сопротивления на конус так, чтобы исключить контакт жала и внутренних стенок резистора, к этому месту надо будет припаять второй провод к блоку питания.
- Стальную проволоку надо согнуть пополам, выгнуть в месте сгиба кольцо по диаметру резистора (должно садиться очень плотно) и загнуть его под прямым углом.
- Кольцо залудить, надеть на резистор и припаять так, чтобы концы стальной проволоки были направлены в одну сторону с оставшимся выводом.
- Из полоски текстолита вырезать плату таким образом, чтобы на широкой части с разных сторон было две контактные площадки для припаивания концов проволоки и второго вывода резистора соответственно, средняя должна плотно входить в корпус ручки, а узкая — иметь контактные площадки для подпайки проводов от блока питания.
- Припаять концы проволоки и вывод сопротивления к плате, с дугой стороны припаять провода от блока питания
- В отверстие резистора плотно вставить кусочек термостойкого изолятора (той же керамики, например), чтобы исключит контакт жала со вторым выводом.
- Вставить медное жало в отверстие. Жалу можно придать любую удобную для пайки форму, изогнуть, сплющить, заточить и т.д.
- Пропустить провода через корпус ручки, вставить в него плату и подсоединить провода к блоку питания.
Устройство паяльника для микросхем
Работа таким импульсным микросхемным паяльником, сделанным своими руками, безопасна для микросхем и не утомляет руку.
Устройство и принцип работы
Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:
- Входящая в энергосберегающие лампы электронная начинка гарантирует высокую нагрузочную способность изделия, работающего в режиме длительного (непрерывного) свечения;
- Эффективность использования сетевого напряжения (КПД) в этом случае существенно повышается;
- Встроенная схема энергосберегающей лампы позволяет получить компактное и лёгкое изделие (за счёт отсутствия громоздкого и тяжёлого трансформатора).
Дополнительная информация. Рассматриваемая энергосберегающая импульсная схема питания имеет только один небольшой недостаток, состоящий в её низкой надёжности и частом выходе из строя.
Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:
- Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
- Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
- На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.
Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.
Отличия от обычного паяльника
Основные отличия импульсного паяльника от обычного заключаются в следующем:
- Нагревательный элемент как таковой отсутствует. Нагревается само жало за счет проходящего по нему сильного тока. Жало включают в цепь вторичной обмотки трансформатора.
- Быстрый прогрев жала (несколько секунд).
- Экономичность (электроэнергия расходуется только в момент пайки).
- Безопасность. Паяльник нагревается на несколько секунд и так же быстро остывает.
- Возможность регулировать мощность (в некоторых схемах)
Импульсный и обычный паяльники
Из негативных отличий следует отметить неприменимость такого устройства для пайки микросхем и других элементов, чувствительных к перегреву и к поражению статическими зарядами.
Как работают люминесцентные лампы: 4 фазы запуска и отключения — простое объяснение
Внутри герметичного пространства стеклянной колбы находятся пары ртути, создающие ультрафиолетовый спектр излучения. В видимый свет его преобразует люминофор, нанесенный по внутренней поверхности трубки.
Газовый разряд, вызывающий свечение, протекает между электродами, образованными нитями накала. Для его розжига используется дроссель и стартер.
Фаза запуска №1. Разогрев нитей накала
При подаче напряжения выключателем на схему лампы в ней по замкнутой цепи начинает протекать переменный ток. Его путь: дроссель, одна нить накала, емкостное сопротивление стартера, вторая нить накала.
Металл обоих электродов разогревается, вокруг них создается электронная эмиссия, облегчающая возникновение тока газового разряда.
Фаза запуска №2. Замыкание контакта стартера
Дроссель, обладая индуктивным сопротивлением, первоначально накапливает электромагнитную энергию.
Внутри стартера между его электродами создается тлеющий разряд, нагревающий биметаллический контакт. Последний начинает выгибаться и замыкает дополнительную цепочку, подключенную параллельно электродам. Через нее начинает протекать ток.
Тлеющий разряд прекращается. Биметалл остывает.
Фаза запуска №3. Газовый разряд
Остывший биметалл стартера отключает контакт дополнительной цепочки.
Дроссель при разрыве цепи формирует импульс повышенного напряжения благодаря наложению ЭДС самоиндукции на сигнал бытовой сети 220 вольт.
Большой всплеск напряжения между электродами колбы пробивает электрическое сопротивление газовой среды, создается ток разряда в ней.
Дроссель же с момента возникновения газового разряда своим сопротивлением ограничивает ток в цепи, предотвращает дуговое замыкание. Лампа светится.
На этом этапе стартер уже выполнил свою задачу и в работе не участвует.
Фаза запуска №4. Снятие напряжения выключателем
Разрыв цепи питания прекращает протекание газового разряда и свечение лампы.
Изложенная технология запуска за счет предварительного разогрева нитей накала называется горячей. Она обеспечивает наиболее экономный режим создания нагрузок на встроенные электроды, обеспечивает им повышенный ресурс.
Люминесцентную лампу можно запустить в работу быстрее, без прогрева нитей. Для этого между ними достаточно приложить импульс повышенного напряжения. Этот метод называется холодным запуском. Его применение значительно сокращает ресурс оборудования.
Делаем самодельный электропаяльник импульсного типа
Рассмотрим пошаговую инструкцию по самостоятельному изготовлению паяльника трансформаторного типа.
- Подобрать подходящий трансформатор. Подойдет любой силовой от блока питания старой электронной техники мощностью 50-150 ватт.
- Аккуратно разобрать его и снять обмотки. С вторичной можно не церемониться, а с первичной надо обойтись осторожно — она войдет в состав изделия.
- Изготовить и поместить поверх первичной вторичную обмотку из медной шины сечением не менее 20 мм Достаточно одного витка, надо оставить концы шины длиной не менее 15 см.
- Для изоляции следует использовать стеклоткань или термоусадочные трубки.
- К концам шин на болтовых креплениях присоединить V- образный кусок медной проволоки толщиной 1,5-2 мм (подбирается опытным путем)
- Из дерева или текстолита вырезать рукоятку, в ней закрепить кнопку включения. И трансформатор.
- Подсоединить к первичной обмотке сетевой кабель через кнопку.
Самодельный электропаяльник импульсного типа
Такой импульсный паяльник, сделанный своими руками, по сравнению с заводскими образцами будет хоть и выглядеть невзрачно, зато работать — ничуть не хуже.
Импульсный блок и его назначение
С обоих концов этой трубки установлены электроды, катод и анод. После подачи на них тока, они начинают нагреваться. Достигнув необходимой температуры они выпускают электроны, которые ударяются об молекулы ртути и та начинает излучать ультрафиолетовый свет.
Ультрафиолет конвертируется в видимый для человеческого глаза спектр благодаря люминофору, который находится в трубке. Таким образом, лампа зажигается спустя некоторое время. Обычно скорость загорания лампы зависит от срока её выработки. Чем дольше лампа работала, тем больше будет промежуток между включением и полным зажиганием.
Чтобы понять предназначение каждой из составляющих ибп, следует разобрать по отдельности какие функции они выполняют:
- R0 – работает ограничителем и предохранителем блока питания. Он стабилизирует и останавливает излишний поток питания тока в момент включения, который протекает через диоды выпрямляющего устройства.
- VD1, VD2, VD3, VD4 – используются как мостовые выпрямители.
- L0, C0 – фильтруют подачу тока и делают её без перепадов.
- R1, C1, VD8 и VD2 – запускная цепь преобразователей. Процесс запуска происходит следующим образом. Источник зарядки конденсатора С1 является первый резистор. После того как конденсатор набирает такой мощности, что способен пробить динистор VD2, он самостоятельно открывается и попутно открывает транзистор, что вызывает автоколебание в схеме. Затем прямоугольный импульс направляется на катод диода VD8 и возникающий минусовый показатель закрывает второй динистор.
- R2, C11, C8 – делают стартовый процесс преобразователей более лёгким.
- R7, R8 – Делают закрытие транзисторов более эффективным.
- R6, R5 – создают границы для тока на базах каждого транзистора.
- R4, R3 – работают как предохранители в случае резкого повышения напряжения в транзисторах.
- VD7 VD6 – предохраняют каждый транзистор бп от возвратного тока.
- TV1 – обратный трансформатор для связи.
- L5 – дроссель балластный.
- C4, C6 – конденсаторы разделения, где всё напряжение и питание разделяется пополам.
- TV2 – трансформатор для создания импульсов.
- VD14, VD15 – диоды, работающие от импульсов.
- C9, C10 – фильтрующие конденсаторы.
Благодаря правильной расстановке и тщательному подбору характеристик всех перечисленных составляющих, мы и получаем блок питания необходимой нам мощности для дальнейшего использования.
Принцип работы
Если кто-то планирует сделать электронный паяльник самостоятельно, то принцип его работы должен совпадать с оригинальным изделием. Точность соблюдения параметров тут не имеет большого значения. Главное, чтобы самодельный импульсный паяльник работал, как и покупной, а также выполнял те же функции.
В дежурном режиме основной принцип работы основывается на том, что генератор в микросхеме устройства может функционировать прерывисто. Микросхема подает импульсы на трансформатор. В то же время сам трансформатор подает напряжение на конденсатор и диодный мост. По этой схеме оно достигает жала паяльника, но напряжения еще не достаточно для начала разогрева до нужной температуры. Он находится только в подогретом состоянии в «ждущем режиме».
Схема импульсного паяльника должна содержать в себе специальный переключатель, который и создает особенность работы устройства. При нажатии кнопки, паяльник переходит в рабочий режим. Здесь срабатывает емкость из нескольких конденсаторов, которая суммируется. Благодаря этому генератор начинает работать на понижение частоты до того момента, когда трансформатор полностью не насытится. После этого мощность импульсом подается в жало, которое моментально разогревается.
Разбираем лампу
Итак, берём нерабочую лампочку, находим место стыка стеклянной колбы с пластиковым корпусом. Аккуратно поддеваем половинки отвёрткой, постепенно продвигаясь по «пояску». Обычно эти два элемента соединены пластиковыми защёлками, и если вы собираетесь ещё как-нибудь использовать обе составляющие, не прикладывайте больших усилий — кусок пластика может легко отколоться, и герметичность корпуса лампочки будет нарушена.
Вскрыв корпус, осторожно рассоедините контакты, идущие от балласта к нитям накала в колбе, т.к. они блокируют полноценный доступ к плате. Часто они просто примотаны к штырькам, и если Вы не планируете больше использовать вышедшую из строя колбу, можете смело отрезать соединительные проводки. В результате перед вами должна предстать примерно такая схема.
Разборка лампы
Понятно, что конструкции ламп от разных производителей могут отличаться «начинкой». Но общая схема и базовые составляющие элементы имеют много общего. Затем нужно скрупулёзно осмотреть каждую деталь на предмет вздутий, пробоев, убедитесь в надёжности пайки все элементов. Если какая-то из деталей перегорела, это будет сразу видно по характерной копоти на плате. В случаях, когда видимых дефектов не обнаружено, но при этом лампа является нерабочей, воспользуйтесь тестером и «прозвоните» все элементы цепи. Как показывает практика, чаще всего страдают резисторы, конденсаторы, динисторы из-за больших перепадов напряжения, которые с незавидной регулярностью возникают в отечественных сетях. Кроме того частые щёлканья выключателем крайне негативно сказываются на продолжительности работы люминесцентных лампочек. Поэтому чтобы максимально надолго продлить им время эксплуатации, старайтесь как можно реже включать их и выключать. Сэкономленные на электроэнергии копейки в итоге выльются в сотни рублей на замену раньше времени выгоревшей лампочки.
Разобранные лампы
Если в результате первичного осмотра вы выявили подпалины на плате, вздутие деталей, попробуйте заменить вышедшие из строя блоки, взяв их у других нерабочих лампочек-доноров. После установки деталей ещё раз «прозвоните» тестером все составляющие платы. По большому счёту из балласта нерабочей люминесцентной лампочки можно изготовить импульсный блок питания мощностью, соответствующей исходной мощности лампы. Как правило, маломощные блоки питания, не требуют существенных доработок. А вот над блоками большей мощности, конечно, придётся попотеть. Для этого нужно будет немного расширить возможности родного дросселя, снабдив его дополнительной обмоткой. Вы можете регулировать мощность создаваемого блока питания, увеличивая число вторичных витков на дросселе. Хотите узнать, как это следует делать?
Потенциальные ошибки
Не рекомендуется использовать как выходной выпрямитель стандартный диодный мост на низких частотах. Особенно нежелательно это делать, если источник бесперебойного питания отличается высокой мощностью.
Нет смысла упрощать схему, накладывая базовые обмотки непосредственно на силовой трансформатор. В случае отсутствия нагрузки возникнут немалые потери, поскольку в транзисторные базы станет поступать ток большой величины.
Если используется трансформатор с возрастанием тока нагрузки, повысится и ток в транзисторных базах. Эмпирически установлено, что после того, как показатель нагрузки доходит до 75 Вт, в магнитопроводе наступает насыщение. Результатом этого является снижение качества транзисторов и их чрезмерный нагрев. Чтобы не допустить такого развития событий, рекомендуется самостоятельно обмотать трансформатор, используя большее сечение сердечника. Также допускается складывание вместе двух колец. Еще один вариант состоит в использовании большего диаметра проводника.
Базовый трансформатор, выступающий в качестве промежуточного звена, можно удалить из схемы. С этой целью токовый трансформатор присоединяют к выделенной обмотке силового трансформатора. Делается это с использованием высокомощного резистора на основе схемы обратной коммуникации. Минусом такого подхода является постоянное функционирование трансформатора тока в условиях насыщения.
Недопустимо подключение трансформатора вместе с дросселем (находится в преобразователе балласта). В противном случае из-за снижения общей индуктивности возрастет частота ИБП. Следствием этого станут потери в трансформаторе и чрезмерный нагрев транзистора выпрямителя на выходе.
Нельзя забывать о высокой отзывчивости диодов к повышенным показателям обратного напряжения и тока. К примеру, если поставить в схему на 12 вольт 6-вольтовый диод, данный элемент быстро придет в негодность.
Не следует менять транзисторы и диоды на низкокачественные электронные компоненты. Рабочие характеристики элементной базы российского производства оставляют желать лучшего, и результатом замены станет снижение функциональности источника бесперебойного питания.
Ёмкость входного фильтра и пульсации напряжения.
Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.
Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.
Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.
Микросхемное изделие импульсного принципа
Более сложный по своей конструкции, но и более надёжный — это импульсный паяльник на микросхеме. Этот прибор будет иметь защиту от перегрева, что автоматически сделает его более долговечным и надёжным.
В таких приборах для защиты микросхемы от перегревов реализуется специальное устройство, которое исключает возникновение поломок из-за перегрева. Роль блока питания здесь осуществляет резистор, а само устройство должно обладать регулируемым входом напряжения, изменяемое от 0 до 15 В. Резистор МЛТ с номиналом 8 Ом и мощностью 0,5 кВт обеспечивает нагрев наконечника.
Читать также: Размер листа профнастила для крыши
Чтобы сделать такой резистор, одну ножку элемента удаляют, а там, где она закрепляется просверливают отверстие с помощью сверла на 11 мм. Во избежание прикосновения с внутренней полостью чаши резистора, когда устанавливается жало, создаётся защита торца с помощью слюды. Для индикации включения в цепь добавляется светодиод, который при нажатии на кнопку сигнализирует о работе прибора.
Вышеописанные электропаяльники очень удобны и практичны в работе. Моментальный нагрев позволяет паять без траты времени. Но стоит понимать, что далеко не для всех видов пайки они подойдут. Зато в своей области применения это по-настоящему отличный помощник, способный облегчить работу своему владельцу. К тому же почти бесплатный, что зачастую немаловажно.
Импульсные паяльники зарекомендовали себя как удобный, экономичный и безопасный инструмент радиомонтажника. Магазины предлагают множество моделей на любой вкус и кошелек.
Самостоятельное изготовление такого устройства может быть продиктовано не столько соображениями экономии, сколько жаждой познания и тягой к самореализации домашних мастеров. В этой статье мы расскажем об устройстве и особенностях импульсного паяльника и опишем несколько способов его самостоятельного изготовления.
Импульсный паяльник из преобразователя для лам дневного света
Обойтись в электротехнике и электронике без паяльника невозможно. В магазинах таких приборов продаётся немало. Можно купить инструмент, ориентируясь на его мощность или тип нагревательного элемента. Однако сильный нагрев и большая площадь жала требуется не всегда, особенно в работе с небольшими деталями и платами, поэтому возникает необходимость приобрести или изготовить импульсный паяльник своими руками.
Рассматриваемая энергосберегающая импульсная схема питания имеет только на значительные нагрузки (чтобы подключать импульсный паяльник.
Виды паяльников
Нагревающийся инструмент, соединяющий специальным припоем из сплавов на основе свинца, олова или меди металлические детали, называется паяльником. Детали, составляющие устройство паяльника, просты и немногочисленны:
- Электрический питающий провод с вилкой.
- Рукоятка.
- Корпусная оболочка, защищающая внутреннюю часть инструмента.
- Нагревательный элемент.
- Стержень.
- Наконечник, или жало.
Для достижения максимального соединения для изготовления жала и стержня используется медь.
Одним из самых распространённых инструментов стал паяльник с нагревателем из нихромовой спирали. У некоторых моделей имеется датчик в виде термопары, отключающий инструмент при достижении рабочей температуры.
Более современными являются устройства с нагревателем в форме стержней из керамики. Они быстрее нагреваются, имеют большие возможности по настройке необходимых параметров и долгий срок эксплуатации.
Прибор с наконечником, имеющим ферромагнитное покрытие, нагревается наведёнными токами магнитного поля. Это устройство называется индукционным паяльником. Пламя от горения газа через специальную насадку нагревает жало в газовом паяльнике. Это приспособление автономно, и заправка возможна от обычного газового баллончика.
Паяльники небольшой мощности с питанием от аккумулятора также являются мобильными и применяются для ремонта небольших деталей. Ультразвуковые инструменты используются для безфлюсовой пайки на основе припоев, не содержащих свинца.
Пробный пуск
Собрав схему согласно нашим рекомендациям, можно приступать к пробным испытаниям. Обычно при этом используется обычная лампочка накаливания, мощностью, соответствующей изготовленному блоку питания.
Пробный пуск
Подключённая к цепи, она служит чем-то сродни предохранителя стабилизатора и оберегает блок при перепадах токов и напряжения. Если всё хорошо, лампа особо никак не влияет на работу платы (из-за низкого сопротивления). Зато при скачках высоких токов сопротивление лампы возрастает, нивелируя негативное воздействие на электронные компоненты схемы. И даже если вдруг лампа сгорит — её будет не так жалко, как собственноручно собранный импульсный блок, над которым вы корпели несколько часов. Самая простая схема проверочной цепи выглядит так.
Запустив систему, понаблюдайте, как меняется температура трансформатора (или обмотанного «вторичкой» дросселя). В том случае если он начинает сильно нагреваться (до 60ºС), обесточьте цепь и попробуйте заменить провода обмотки аналогом с большим сечением, или же увеличьте количество витков. То же самое касается и температуры нагрева транзисторов. При существенном её росте (до 80ºС) следует снабдить каждый из них специальным радиатором. Вот в принципе и всё. Напоследок напоминаем Вам о соблюдении правил безопасности, так как на выходе напряжение очень высокое. Плюс ко всему компоненты платы могут сильно нагреваться, никак не меняясь при этом внешне.
Также не советуем использовать такие импульсные блоки при создании зарядных устройств для современных гаджетов с тонкой электроникой (смартфонов, электронных часов, планшетов и т.д.). Зачем так рисковать? Никто не даст гарантию что «самоделка» будет работать стабильно, и не угробит дорогостоящее устройство. Тем более что подходящего добра (имеется в виду готовых зарядок) более чем предостаточно на рынке, и стоят они совсем недорого. Такой самодельный блок питания может безбоязненно использоваться для подключения лампочек разных видов, для запитки LED-лент, несложных электроприборов, не столь чувствительных к скачкам токов (напряжения).
Надеемся, Вы смогли осилить весь приведённый материал. Возможно, он вдохновит вас попробовать создать нечто подобное самостоятельно. Пусть даже первый блок питания, сделанный вами из платы лампочки, сначала и не будет реальной рабочей системой, зато Вы приобретёте базовые навыки. И главное – азарт и жажду творчества! А там, глядишь, и получится сделать из подручных материалов полноценный блок питания для светодиодных лент, весьма популярных сегодня. Удачи!
Устройство с импульсным нагревом
Для того чтобы собрать схему электронного устройства, потребуется пайка. Но компоненты, составляющие содержимое таких приборов, очень малы, и применение простых нагревательных инструментов ограничено. Для этих целей подойдёт импульсный паяльник.
Медная проволока небольшого диаметра, из которой обычно изготовлено его жало, обладает хорошей теплопроводностью, а малая толщина позволяет добраться до самых небольших элементов. Низкое напряжение, которое используется для нагрева, не требует больших затрат на электроэнергию. К тому же она расходуется исключительно в момент проведения паяльной операции.
Основными компонентами такого прибора являются:
- Высокочастотный преобразователь, выдающий ток частоты от 18 до 40 килогерц.
- Понижающий автотрансформатор высокой частоты, на вторичной обмотке которого находятся токоприёмники для установки жала, которое закрепляется к ним винтами для плотного контакта.
- Управляющая схема с микропроцессором.
Новейшие устройства такого типа оснащаются различными датчиками и индикаторами, могут иметь точечную подсветку области пайки и рукоятку из жаростойкого нескользящего пластика, напоминающего пистолет. С такой ручкой действовать удобнее всего.
Небольшая масса и габариты обеспечивают работу с самыми мелкими компонентами микроплат сотовых телефонов и планшетных компьютеров. А если имеется устройство корректировки уровня нагрева, то такой прибор справится и с более крупными объектами, подойдёт и для обычных домашних операций пайки.
Но некоторые меры предосторожности соблюдать необходимо: есть электронные компоненты, негативно реагирующие на напряжение высокой частоты, которое подаётся на жало.
Какой мощности блок питания можно изготовить из КЛЛ?
Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.
Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.
В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.
Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.
В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.
Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.
Как сделать блок питания из эконом лампы
Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.
Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.
Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.
В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике. Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора. Цепь запуска построена на базе симметричного диака.
Схема та же, что и у электронного трансформатора, только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.
Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.
Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.
Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.
Первым делом смотрим на схему балласта.
Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.
Дальше находим убитый блок питания от компьютера. Нам нужен только силовой импульсный трансформатор.
На плате у нас имеется также маленькое колечко.
Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,
а третья является обмоткой обратной связи потоку и содержит всего один виток.
А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.
То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.
Второй вывод подключается к точке соединения двух конденсаторов полумоста.
Да, друзья, на этом процесс завершен. Видите, насколько все просто.
Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.
Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.
Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.
Вторичную обмотку трансформатора можно сделать на любое напряжение.
Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.
В конце хочу сказать, что это только один из вариантов переделки таких блоков. Естественно, существует множество иных способов. На этом, друзья, все. Ну а с вами, как всегда, был KASYAN AKA. До новых встреч. Пока!
Автор: Ака Касьян
volt-index.ru
Переделка блока
Прежде чем начинать переделку БП, необходимо выбрать выходную мощность тока. От этого показателя зависит степень модернизации системы. Если мощность будет находиться в пределах 20-30 Вт, не понадобятся глубокие изменения в схеме. Если же запланирована мощность свыше 50 Вт, модернизация нужна более системная.
Обратите внимание! На выходе из БП будет постоянное напряжение. Получение переменного напряжения на частоте 50 Гц не представляется возможным.
Определение мощности
Вычисление мощности осуществляется согласно формуле:
В качестве примера рассмотрим ситуацию с блоком питания, имеющим следующие характеристики:
- напряжение — 12 В;
- сила тока — 2 А.
Вычисляем мощность:
P = 2 × 12 = 24 Вт.
Конечный параметр мощности будет больше — примерно 26 Вт, что позволяет учесть возможные перегрузки. Таким образом, для создания блока питания потребуется достаточно незначительное вмешательство в схему стандартной эконом-лампы на 25 Вт.
Новые компоненты
На схеме, представленной далее, показан порядок добавления новых деталей. Все они обозначены красным цветом.
В число новых электронных компонентов входят:
- диодный мост VD14-VD17;
- 2 конденсатора C9 и C10;
- обмотка на балластном дросселе (L5), количество витков которой определяется эмпирически.
Дополнительная обмотка выполняет еще одну важную функцию — является разделяющим трансформатором и защищает от проникновения напряжения на выходы ИБП.
Чтобы вычислить нужное количество витков в дополнительной обмотке, выполняются такие действия:
- Временно наносим обмотку на дроссель (приблизительно 10 витков провода).
- Стыкуем обмотку с сопротивлением нагрузки (мощность от 30 Вт и сопротивление 5-6 Ом).
- Подключаемся к сети и делаем замер напряжения при нагрузочном сопротивлении.
- Полученный результат делим на число витков и узнаем, сколько вольт приходится на каждый виток.
- Выясняем нужное количество витков для постоянной обмотки.
Более подробно порядок расчета показан ниже.
Для вычисления нужного количества витков планируемое напряжение для блока делим на напряжение одного витка. В результате получаем число витков. К итоговому результату рекомендуется прибавить 5-10 %, что позволит иметь определенный запас.
Не стоит забывать, что оригинальная дроссельная обмотка находится под сетевым напряжением. Если нужно намотать на нее новый слой обмотки, позаботьтесь о межобмоточном изоляционном слое. Особенно важно соблюдать данное правило, когда наносится провод типа ПЭЛ в эмалевой изоляции. В качестве межобмоточного изоляционного слоя подойдет политетрафторэтиленовая лента (толщина 0,2 миллиметра), которая позволит повысить плотность резьбовых соединений. Такую ленту используют сантехники.
Обратите внимание! Мощность в блоке ограничивается габаритной мощностью задействованного трансформатора, а также максимально возможным током транзисторов.