Контактная информация
г.Москва ул.Ижорская, Д.8, с.2

Несущая способность грунта и способы ее увеличения

image
image
image

Опубликовано: 27.05.2012 Рубрика: Строительство Просмотров: 3358

Грунт и фундамент. Виды и характеристики

Строительство дома — значительное событие в жизни любого человека. Тем более что на каждого оно выпадает не более одного-двух раз в жизни. И хотя в поэзии и литературе исторически сложился стереотип, что дом это стены и крыша, но основой дома всегда является фундамент, потому, что от него зависит долголетие всего здания, а значит и стен, и крыши. И задумывая дом для своей семьи, надо начинать именно с этой, самой незаметной, но самой главной части дома — с его фундамента.

Самые популярные виды фундамента в дачном и загородном строительстве — это мелкозаглубленные ленточные фундаменты и столбчатые с перевязкой. Выбор фундамента по соображениям «цена/качество» производится по следующим критериям:

  • характеристика грунта
  • глубина промерзания грунта
  • тип строения

Давайте более подробно разберем каждый из этих критериев.

От чего зависит несущая способность?

Для определения несущей способности грунта специалисты проводят геологические изыскания. На территории строительной площадки бурят несколько скважин, берут из них пробу через равные расстояния, проводят лабораторные исследования и оформляют отчет.

На несущую способность влияет несколько факторов:

  • Вид грунта;
  • Толщина слоя;
  • Глубина залегания;
  • Характеристики предыдущего слоя;
  • Уровень грунтовых вод (УГВ);
  • Глубина промерзания почвы;
  • Плотность.

При строительстве самый важный показатель — УГВ, от него зависит влажность грунтов.

В сухом и насыщенном влагой состоянии одни и те же породы имеют разные характеристики, отличающиеся в несколько раз.

image Любые грунты, соприкасающиеся с водой, считаются насыщенными влагой.

Это увеличивает их текучесть и снижает несущую способность.

Исключением являются средние и крупные пески. Их свойства не изменяются из-за насыщения водой.

Плотность — это показатель пористости.

Грунт состоит из твердых частиц, между которыми находятся полые пространства, заполненные воздухом или водой. При превышении максимальной возможной нагрузки происходит деформация (усадка), способная полностью разрушить здание.

Плотные породы с минимальным количеством пустот считаются наиболее прочными. Усадка таких грунтов минимальна.

Залегание

При проектировании здания очень важно исследовать толщу грунтов ниже предполагаемой подошвы фундамента. Близко к поверхности залегают непрочные породы, способные воспринимать нагрузку лишь от небольшого здания. Чем глубже залегает порода, тем она старше, плотнее, толще и надежнее.

В зависимости от залегания и типа грунтов будет разрабатываться план установки фундамента в соответствии с правилами:

  • Не допускается укладка фундамента вблизи границы разных пород;
  • Желательно установить фундамент выше УГВ, если это невозможно — принимаются меры по гидроизоляции конструкций;
  • Идеален для установки фундамента горизонтальный слой.

Несущая способность основания будет снижена в местах смены пород, вблизи УГВ, на склонах.

image

Рис. 1 Пример инженерно-геологического разреза

На чертеже разной штриховкой обозначены породы, указаны высоты устий скважин, начерчена линия УГВ.

Типы грунтов

Существует несколько типов пород, обладающих особыми характеристиками:

  • Скальные, обладающие большой плотностью и несущей способностью;
  • Крупнообломочные. Состоят из отдельных крупных частиц;
  • Песчаные. Непластичные грунты, способные выдерживать большую нагрузку;
  • Глинистые. Связные грунты, легко впитывают влагу, при промерзании пучинятся.

Скальные

Скальные породы образуются в результате извержения вулканов и последующего застывания магмы в толще земли. Благодаря этому формируется порода с малой пористостью и жесткими связями между частицами.

Характеризуется большой прочностью, устойчивостью к отрицательным температурам, не впитывает воду, не пучинятся.

При отсутствии трещин в породе не вымывается и очень медленно разрушается с течением времени.

Скальные породы идеальны в качестве основания для любого объекта. Но они очень редко применяются для строительства, ведь встречаются преимущественно на большой глубине или в труднодоступных участках.

Крупнообломочные

Крупнообломочные грунты — это несвязанные породы, представляющие собой толщу камней (обломков скальных пород), большинство из которых крупнее 2 мм. Слежавшиеся валуны и обломки, не подверженные вымыванию — это хорошее основание.

Различают несколько видов крупнообломочных пород:

  • Гравий. Большая часть обломков имеет размер 2–40 мм. Различают гравий (обломки округлой формы) и дресву (обломки угловатой формы);
  • Галька (округлые части) и щебень (угловатые части). Не менее 50% массы грунта представлено обломками от 40 до 100 мм;
  • Валуны. Размер каждого обломка превышает 100 мм.

Песчаные

В ненасыщенном водой состоянии песок сыпучий, но слежавшийся песчаник — это надежное основание, не изменяющее своих свойств при насыщении влагой. Песчаные породы не пучинятся, хорошо пропускают воду, не задерживая ее вблизи конструкций.

Существует несколько видов песчаников:

  • Пылеватый. Размер фракций 0,005–0,050 мм;
  • Мелкий. Размер песчинок варьируется от 0,050 до 1,0 мм;
  • Крупный. Зерна размером до 2 мм.

Самые надежные основания — это слежавшиеся крупнообломочные породы и крупный песок.

Глинистые

Порода, состоящая из очень маленьких связанных частиц размером до 0,005 мм, называется глинистой. Выветренные мельчайшие частички пород чешуйчатой формы образуют массу грунта, способную быстро впитывать воду. В результате этого порода становится пластичной.

Глина с трудом теряет влагу, при наступлении холодов вода внутри нее замерзает, увеличивается в объеме и глина выпучивается. Этот процесс способен всего за одну зиму разрушать фундамент.

Другие

Существует несколько видов грунтов, практически непригодных для строительства:

  • Плывуны. Мелкие частицы песка с примесью глины, очень подвижны, имеют малую несущую способность;
  • Суглинки. В составе присутствует 10–30% глинистых частиц;
  • Супеси. Глина составляет 3–10% от общей массы.

Мерзлые и вечномерзлые

Мерзлые грунты меют температуру ниже нуля, в том или ином виде содержат в составе льдистый частицы. После нахождения в мерзлом состоянии от 3 лет и больше такие грунты уже приобретают свойства вечномерзлых грунтов.

В замерзшем состоянии мерзлые и вечномерзлые грунты очень прочные, не подвержены деформациям, так как связующие их криогенные структуры повышают первоначальную прочность.

В процессе таяния полностью меняется структура и физико-механические свойства, происходят серьезные деформации. Некоторые грунты даже становятся жидкими после оттаявания.

Основная особенность всего класса мерзлых грунтов — просадочность при таянии, когда происходит масштабное уменьшение объема грунта. Вечномерзлые грунты — достаточно проблемный тип грунта для проектирования и строительства.

Какой фундамент выбрать? Это можно определить только после определения всех необходимых расчетных деформационо-прочностных характеристик в процессе лабораторных испытаний.

  • Первый вариант — сохранить структуру криогенных связей — мерзлое состояние как во время строительства, так и при дальнейшей эксплуатации. Сохранение вечной мерзлоты грунта сохраняется путем организации холодных первых этажей, проветриваемых холодных подполий с вентилируемыми продухами. В этом случае определяем мин.глубину заложения фундамента по СНиП 2.02.04-88:
  • Второй вариант — подготовка сооружения к неравномерной осадке. Можно заменить неустойчивый грунт на непосадочный песок или крупнообломочный грунт. Можно также опирать фундамент на более прочный слой, тогда можно использовать вечномерзлые грунты в оттаявшем состоянии или состоянии таяния. Это возможно лишь при условии наличия в массиве грунта прочных малодеформирующихся в процессе оттаивания грунтов.

Заглубление фундамента в этом случае осуществляется на основании расчетной глубины сезонного промерзания грунта df и уровню подземных вод, которые образуются в процессе оттаивания.

Необходимо застраивать площади на вечномерзлой земле только по одному из вариантов, а не так, что сосед выбирает холодный первый этаж, а вы — сваи.

Стоить отметить, что широко используемые в северном строительстве сваи тоже подвержены негативному воздействию: напорному давлению вод при промерзании грунта; хим. агрессивности воды оттаявшего слоя; появлению трещин из-за температурных деформаций.

Повышение несущей способности

На площадках с недостаточной несущей прочностью основания необходимо провести работы по повышению несущей способности грунта.

Есть два основных метода:

  • Уплотнение;
  • Химические добавки.

В первом случае для достижения большей плотности в грунт вбивают сваи небольшого размера, сокращая количество пустот в породе.

Во втором случае в толщу земли вводят различные химические добавки, сцепляющие между собой отдельные части грунтов.

Еще один способ улучшить характеристики основания — это устройство песчаной подушки под фундамент. После уплотнения она сможет воспринимать и равномерно передавать нагрузку от здания на залегающие ниже породы. Песок не задерживает влагу, не пучинится и является хорошим основанием для строительства дома.

Еще один способ улучшить характеристики основания — это понижение УГВ.

Таблица средних значений

Средняя несущая способность грунтов — это основной показатель расчетов. После выемки образцов породы из скважин проводится определение их вида для дальнейшей работы.

Классификация грунтов приведена в таблицах СНИП 1–3 ГОСТ 25100.2011. После определения типа грунта в каждом из залегающих слоев необходимо определить предельное сопротивление грунта сжатию.

Подробная информация содержится в ГОСТ 25100.2011 «Грунты. Классификация», таблица Б.1.

Рис. 2 Сопротивление сжатию

Основа расчета — расчетное сопротивление осевому сжатию. С подробным методом расчета с учетом всех нюансов можно ознакомиться в СП 22.13330.2016 «Основания зданий и сооружений». Здесь же можно найти значение всех коэффициентов, необходимых для максимально точного расчета.

Определение типа грунтов

Для выполнения расчетов и построения геологического разреза необходимо определить типы грунтов. Сначала проводятся полевые геологические работы, в ходе которых на участке бурят несколько скважин.

В процессе бурения через равнее промежутки геологи изымают из толщи земли образцы породы, укладывают их в специальные контейнеры и подписывают. Весь изъятый материал ведут в лабораторию для дальнейшего исследования.

Определить состав пород и их характеристики самостоятельно невозможно. Для этого потребуется специальное оборудование и знания. Без помощи профессионалов можно только примерно определить тип породы с помощью простого метода. Из насыщенного водой грунта пробуют скатать «колбаску».

От полученного результата зависит пластичность:

  • Длинный (до полуметра) жгут — высокая пластичность, грунт связный, частиц не видно. Это характерно для глинистых пород;
  • Жгут получается коротким, образуются трещины, он рвется — пластичность средняя, грунт связный, в составе в основном присутствуют глинистые частицы, содержание песка от 10 до 30%. Это характерно для суглинков.
  • В насыщенном водой состоянии жгут скатать невозможно — грунт несвязанный, состоят из заметных глазу частиц. Характерно для песка.

Рис. 3 Схема состава различных пород

Точно определить тип породы и его характеристики возможно только в лабораторных условиях.

Расчет

Расчет несущей способности — это основная цель геологических изысканий. Выполнять его можно только после определения типа пород внутри скважин и получения чертежей геологических разрезов на территории строительной площадки.

Чертеж поможет определить положение слоев пород в толще земли и даст представление о возможности строительства на площадке.

Несущая способность (R) определяется по формуле согласно алгоритму:

  1. Значение R0 (сопротивление осевому сжатию) определяется с помощью таблицы и напрямую зависит от типа грунта;
  2. Рассчитывается глубина промерзания. Это значение индивидуально для каждого региона. Будет зависеть от типа пород в верхних слоях;
  3. Выбирается оптимальная глубина заложения в толще одного из прочных слоев непучинистого грунта, ниже глубины промерзания;
  4. Выполняется расчет по формулам: R=R0*[1+k1*(b-100)/100]*(d+200)/2*200 — при принятой глубине заложения до 2 м и R=R0*[1+k1*(b-100)/100]+k2*g*(d-200) — когда глубина заложения превышает 2 м.

Данные для расчета:

  • k1 — коэффициент берется из таблицы в зависимости от вида породы. 0,125 для устойчивых крупнообломочных или песчаных и 0,5 для глин, супеси и суглинков;
  • k2 — применяется для расчетов несущей способности устойчивых пород (слежавшиеся крупнообломочные или песчаные породы);
  • g — необходим для нахождения удельного веса грунта от подошвы слоя и до нижней части фундамента или следующего слоя;
  • b — ширина, опирающейся на основание части фундамента;
  • d — глубина заложения.

После нахождения фактической несущей способности ее сравнивают с требуемой. Если вторая будет больше первой, то придется менять конструкцию будущего дома (увеличивать площадь опирания фундамента на основание или глубину заложения, менять вид фундамента, выбирать в качестве основания другой, более прочный слой).

Скальные структуры

Это сцементированные и спаянные между собой породы. Внешне эти структуры представляют собой сплошной массив или трещиноватый слой. Насыщенные водой, они показывают высокий процент прочности при сжатии. Эти структуры легко растворимы и размягчимы в воде. Они хорошо подходят в качестве основы для фундамента благодаря своей прочности, стойкости к сжатию и морозам. Несомненным преимуществом этих структур является также и то, что для них не требуется дополнительного вскрытия и заглубления.

Калькулятор для расчета фундаментов

Процесс расчета несущей способности основания — это кропотливый процесс, требующий обширных знаний в области строительства и геологии. На помощь инженерам приходит специальные калькуляторы.

При использовании калькулятора необходимо самостоятельно выбирать тип фундамента, вид почвы и глубину промерзания.

Для правильного определения всех параметров необходимы знания геологии. Доверять анализ основания необходимо специалистам, ведь в строительстве есть множество нюансов, которые не может учесть компьютерная программа.

Для самостоятельного использования отлично подойдут программы для расчета объема ленточного фундамента. Они не учитывают вид почвы и ее несущую способность. Для расчета необходимо ввести все параметры фундамента, и она посчитает объем бетона.

Действующие проектировщики создали простую программу, рассчитывающую базы колонн в зависимости от типа пород основания и веса здания. Она очень специфична и подойдет далеко не каждому, но профессионалам может помочь в расчетах.

Формула Терцаги

Формула Терцаги описывает закономерность уплотнения грунтов и их компрессионное сжатие. Для исследования грунтов редко выбирают метод трехосного сжатия ввиду его сложности, метод одноосного сжатия можно применять лишь к узкому кругу грунтов. Именно поэтому Терцаги рассматривает одноосное сжатие в жесткой таре, где стенки не дают образцу деформироваться.

По мере уплотнения, то есть сокращения объема полостей, давление возрастает. В результате становится понятно, то сумма деформаций образца составляется из пластической и остаточной деформации. (ξ1= ξp+ ξв)

Рис. 4 График нагружения грунта

При выполнении повторного нагружения основанию передаются только упругие деформации.

Илистые

Илистые представляют пыль с органическими примесями, сильно насыщаются водой и дают в этом состоянии большие осадки под нагрузкой. Илистые принадлежат к числу слабых грунтов, водопроницаемость имеют малую, но быстро разрыхляются при фильтрации в благоприятных для нее обстоятельствах и могут вытекать вместе с водой.

В отношении глин, суглинков и илистых для определения их качества как грунт оснований особенно существенное значение имеют их влажность и пористость; то же в отношении песков — их пористость.

Расчет полов

Пол на лагах устанавливается в большинстве домов, но при неправильном конструировании подвального помещения (отсутствие продухов, их малый или большой размер) в нем начинает конденсироваться влага.

Вода деформирует или полностью разрушает деревянные лаги и конструкцию пола, способствует разрушению бетона.

Самый простой способ бороться с влагой в подвале — отказаться от цокольного помещения. Пол по грунту обеспечит долговечность конструкции и не даст лишней влаге проникнуть в дом.

Каменный щебень

Каменный щебень, скатывающийся с гор, скапливается в каком-либо месте и сцементированный затем веществами, выделенными промывающей его водой, образует брекчии. Сжимаемость брекчий невелика; сопротивление сдвигам вследствие остроугольности щебня и соединения цементом значительное, однако род цементирующего вещества имеет большое значение. При глинистом заполнении вода действует размягчающим образом. Конгломераты подобны брекчиям, но представляют скопление галек и гравия; вследствие округлости каменного материала они менее сопротивляются сдвигам, чем брекчии. Рыхлый горный щебень, галечник и гравелистые отличаются большей подвижностью и водопроницаемостью, чем сцементированные; они являются опасными основаниями в сейсмических местностях при наклонном залегании.

Где можно класть пол на грунт

Класть пол допускается не на каждый грунт:

  • Основание должно быть хорошо уплотнено и выровнено. В противном случае со временем грунт осядет, стяжка пола повиснет в воздухе и со временем начнет разрушаться;
  • Основанием служат грунты, не подверженные пучению;
  • Не стоит укладывать пол на подвижные грунты.

Существует 2 вида пола по грунту:

  • Связанная плита стяжки. Жестко крепится к ленточному фундаменту, опирается на него. Пол не даст усадки, отделка не пострадает при незначительных изменениях грунтов;
  • Несвязанная. Стяжка не будет покрываться трещинами во время усадки, но при последующей эксплуатации отделка может повредиться из-за взаимного движения стен и пола.

При расчете учитывается временное и постоянное давление на всю поверхность пола. В первом случае нагрузка составит 150 кг/м2 (вес людей и мебели), во втором нагрузка зависит от используемых материалов.

Пески

Пески представляют скопление зерен диаметром менее 2 мм и являются продуктом измельчения скальных горных пород. Различают пески горные с остроугольными зернами, речные и морские с окатанными зернами. Дюнные пески, переносимые ветром, имеют размеры зерен 0,1—0,4 мм. Наиболее часто встречаются пески кварцевые. Пески встречаются в разрыхленном и плотном состоянии, отчего зависят их сжимаемость и сопротивление сдвигам. Степень водопроницаемости песков зависит от крупности их частиц. Тонкозернистые пески отличаются малой водопроницаемостью. Песок легко размывается водой. Очень мелкие пески с водой отличаются большой подвижностью.

Ссылка на основную публикацию
Похожее